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Abstract—Clustering is a well-defined problem class in data
mining, and many variations of it exists. However, practitioners
often have additional constraints or quality scores that are not
supported by standard algorithms. This has lead to the study
of constrained clustering, which investigates generic methods to
handle a variety of constraints and objectives. In our bioinfor-
matics work, we were faced with exactly such a problem: a graph
clustering problem with strict connectivity requirements and an
objective function based on penalties rather than density of the
clustering. In this paper, we explain the problem including the
constraints and quality measures, and propose to use generic
Mixed Integer Programming to solve it. We propose two ap-
proaches to handle the connectivity requirement in particular:
one defined over all simple paths in the graph explicitly, and
one based on cutting planes that enforce connectivity only when
needed. Our experiments show that these approaches are able to
solve the problem well. We hence demonstrate the applicability
of generic OR methods on this application-driven data mining
problem.

I. INTRODUCTION

Clustering is the task of partitioning a set of entities into
homogeneous subsets. The quality of the clustering is typically
determined by the distance between the entities. In graph
clustering [1], each entity is assumed to be a node in a graph;
this graph is typically not fully connected. The quality is then
determined by the density of the entities within a cluster or
by the cut size between the clusters, that is the number of
edges shared between different clusters. The latter is for ex-
ample frequently studied in the field of graph partitioning [2].
Graph clustering has applications in many domains including
social network analysis and community detection, information
networks, transportation and logistics, and bioinformatics [1].

As data mining is increasingly applied on more and more
problems in different domains, it increasingly happens that
existing clustering methods are not suited for the problem
at hand. This is either because the problem domain imposes
additional constraints that can not be expressed in these
methods, or because the objective function has a non-standard
form. This has lead to the field of constrained clustering,
which studies clustering problems involving different con-
straints and objectives [3]. An increasingly popular way to
handle a broad range of constraints and objectives is to
use generic optimisation tools. In other words, to cast the

problem as an optimisation problem and to use generic (dis-
crete) optimisation solvers such as constraint programming [4],
mixed integer programming [5], [6] or maximum satisfiability
solvers [7]. Though scalability can be an issue, these solvers
can intrinsically handle different objectives and constraints.

The problem we study in this paper is such a graph cluster-
ing problem that does not fit existing approaches. It is part of
a bigger pipeline in computational cancer research, where the
goal is to find pathways in gene interaction networks. There
is hence an interaction network and it is a hard constraint
that all nodes belonging to a cluster must be connected in this
interaction network. To evaluate the quality there is a separate
weighted co-occurence network and the nodes belonging to a
cluster should have a low co-occurence penalty. Furthermore,
small pathways are biologically less meaningful and hence the
size of the clusters should also be maximized. The problem is
hence a bi-objective graph clustering problem with hard con-
nectivity constraints on a separate network. Existing methods
are not able to handle such a complex setting, hence we study
a mixed integer programming approach.

More specifically, our contributions are as follows: 1) we
identify a new bi-objective constrained graph clustering with
applications in bio-informatics and present an MIP formulation
of the problem; 2) in order to better handle the large number
of connectivity constraints, we propose a branch-and-cut ap-
proach that adds connectivity constraints as needed using the
principle of node-cut sets. Our experiments demonstrate the
effectiveness of the approach.

The rest of this paper is structured as follows: we first
discuss related work. In section III we present the application
that motivates this problem. Section IV introduces the formal
problem definition and a MIP formulation with the connec-
tivity requirement. In section VI, we introduce two methods
for handling the connectivity requirement, including a cutting
plane approach. Section VII contains the experiments after
which we conclude.

II. RELATED WORK

There are several studies that apply mathematical program-
ming to clustering and graph partitioning problems [8]. In



addition to integer linear programming, semidefinite program-
ming [9], [10], and quadratic programming [11] formulations
have also been used for solving these problems. Techniques
such as branch-and-cut [12], [13] and branch-and-price [14],
[15] have been used to improve the performance.

There are several variants of the graph partitioning problem.
When the underlying graph is a complete graph, this problem
is sometimes called the clique partitioning problem. In most
variants of the graph partitioning problem, the edges, nodes,
or both are weighted. The number of clusters can be specified
by the user or they can be decided by the algorithm.The two
most prominent types of objective functions are 1) the total
weight of the edges that have endpoints in different clusters
and 2) the total weight of the edges that have endpoints in
the same cluster. Depending on the meaning of the weights,
these function are minimized or maximized. In either case,
these objectives are meant to increase the homogeneity of the
clusters.

Several types of constraints are common to the graph
partitioning problem. The most widely used constraint is the
balance constraint that requires the number of nodes in all
clusters to be almost equal [16]. Other types of constraints
include constraints on the size of clusters [11], and constraints
on the total weight of nodes in a cluster [12].

The main difference of our problem with existing ones is
that we have two graphs, where the edges of the co-occurrence
graph are weighted, but the goal is to minimize their total
value. The connectivity of the nodes in the interaction network
are required and must hence be added as hard constraints.
The graph partitioning problem of [17] also requires such
constraints. However, they do not assume that the number of
clusters is given, and their encoding of the clustering problem
is quite different from ours.

III. MOTIVATING APPLICATION

In cancer research, tumor tissue is collected from patients
for further study. Such a tumor is basically a cell in which
one or more genes have mutated. Normally that cell would
be destroyed by the immune system, but in case of a tumor
that cell has managed to survive and may even be growing
(out of control). Genes and mutated genes can be identified
in a tumor by sequencing the DNA of the tissue. Nowadays,
this sequencing has become fairly commonplace, enabling
the genome-wide measurement of mutated genes across large
groups of cancer patients.

The key challenges when interpreting these data are to
detect the (mutated) genes that affect the creation and de-
velopment of cancer and to gain an understanding of their
interaction. Initially, the main focus by the community was
solely on the detection of key driver genes. However, there
are typically many mutated genes making it challenging to
detect rare ones with high statistical significance. For this
reason, there is recently a rise in methods aiming to exploit the
information contained in the human interaction network [18],
[19]. This network expresses which genes interact with each
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Fig. 1: (left) A small subgraph extracted from the interaction
network. Dashed lines represent the can-not-link constraints.
(middle) the pathways obtained from non-overlapping clusters
(right) the pathways obtained from overlapping clusters.

other. This can be used to verify that a set of genes interact
with each other.

In our setting we start by considering a subgraph of the
human interaction network containing only those genes and
interactions that were identified as being highly relevant to
breast cancer. Each node represents a gene or gene product,
and each edge represents an interaction between a pair of
nodes. The graph may consist of multiple connected compo-
nents. It is our goal to separate distinct pathways from each
of these components, where a pathway is a set of genes that
interact with each other.

By incorporating such biological pathway information, a
superior selection and understanding of genes and their in-
teractions is possible. A difficult challenge however is how
to determine that two genes are more likely to belong to the
same or to a different pathway. Fortunately, it is known that the
creation and growth of tumors follows a clonal evolutionary
model. Following this model, it is considered unlikely that
a tumor would disrupt and mutate different genes within a
single pathway. Indeed, it is sufficient to disrupt one gene to
disrupt the pathway, and hence evolutionarily there is little
incentive to disrupt others as well. As a consequence, it is
less common that multiple mutated genes of a single pathway
are observed within the same patient. We can hence compute
a co-occurrence penalty score for each pair of genes, based
on the harm associated with the mutations and the number of
patients for whom that pair was observed.

While obtaining pathways with a low penalty is important,
one should not go as far as dividing the genes into small
clusters. For this reason, we will aim to balance the size of the
(smallest) pathway with the amount of penalty the pathways
incur.

IV. PROBLEM AND MIP FORMULATION

From a computational point of view, the input to our
problem are a set of genes and two graphs over those genes:
an unweighted interaction graph and a weighted co-occurrence
graph. We first review some basic graph concepts before
formally defining the problem.

A graph G = (V,E) consists of a set of nodes G and a
set of edges E. Each edge e ∈ E is a tuple (u, v), u, v ∈ V
and the graph is undirected if the ordering of the edges does
not matter. The graph is weighted if each edge e ∈ E has a
corresponding weight w(e). A graph is simple if it does not
have any loops or double edges. A graph is connected if there



is a path between each pair of its nodes. The nodes on a path
except the first and last ones are called the intermediate nodes.
A simple path is a path with no cycles. Another important
concept is that of an induced subgraph. Given a set of nodes
V ′ ⊆ V , the induced subgraph of G on V ′ is a graph G[V ′]
that contains only the nodes in V ′ and only the edges of G
that have both endpoints in V ′.

1) Problem definition: Our problem is as follows: given
a set of genes V , a simple undirected graph Gi = (V,Ei)
representing the interaction network and a simple weighted
undirected graph Go = (V,Eo) with weight function wo

representing the co-occurence network. The goal is to partition
V into k different groups V1, . . . , Vk, where k is assumed
given. Each cluster induces a subgraph on the interaction graph
Gi and that subgraph must be connected. The quality of a
clustering is determined by the size and co-occurence penalty
of the clusters. The two are linearly combined using γ to obtain
the following objective that must be maximized:

f(V1, . . . , Vk) = minkc=1|Vc| − γ
k∑

c=1

∑
e∈Go[Vc]

wo(e) (1)

The first component represents the size of the smallest cluster
while the second component represents the sum of weighted
edges in the induced subgraph of the co-occurence graph Go

on the cluster Vc. γ can be used to balance the size component
to the co-occurence penalty computed and is assumed given.

2) Mixed integer programming: We can formulate this
problem as an integer linear program. The main decision
variables in this formulation are those that determine the
assignment of nodes to the clusters. We will use binary
variables xic indicates whether or not node i is included in
cluster c. Each cluster must be assigned to exactly one cluster.
This can be enforced by the following set of constraints:

k∑
c=1

xic = 1 ∀i ∈ {1, . . . , |V |} (2)

To model the first component of the objective in Eq. 1 we
introduce an integer variable s which represents the size of
the smallest cluster. The domain of s is {0, . . . , b |V |k c}. The
following constraints ensure that s is smaller or equal than the
size of each cluster.

s ≤
|V |∑
i=1

xic ∀c ∈ {1, . . . , k} (3)

As s is included in the objective function it will be maximized
and hence take the value of the size of the smallest cluster
during optimisation.

For the second component, we introduce additional vari-
ables to model the edges in the induced subgraph Go[Vc] of
each cluster. More specifically, we introduce binary variables
yijc which are equal to one if and only if nodes i and j are
both included in cluster Vc. To enforce this property, we add
the following constraints to the model:

yijc ≥ xic + xjc − 1 ∀c ∈ {1, . . . , k},∀(i, j) ∈ Eo (4)

When both xic and xjc are equal to one, this constraint forces
yijc to be equal to one. Otherwise, yijc can be either zero or
one. However, as we will see, yijc is included in the objective
function with a negative coefficient. Hence the optimization
procedure will automatically fix yijc to zero in such cases.

Our formulation so far does not ensure that the nodes in
each cluster are connected. For now assume that constraint
connected(x1c, . . . , x|V |c) enforces the connectivity of cluster
c. We will discuss the exact formulation of this constraint in
the next section.

The complete model that we defined is hence the following,
where wo((i, j)) = wo(e) for e = (i, j):

maximize s− γ
k∑

c=1

∑
(i,j)∈Eo

wo((i, j)) ∗ yijc (5)

s.t.
k∑

c=1

xic = 1 ∀i ∈ {1, . . . , |V |} (6)

yijc ≥ xic + xjc − 1 ∀c ∈ {1, . . . , k},∀(i, j) ∈ Eo (7)

s ≤
|V |∑
i=1

xic ∀c ∈ {1, . . . , k} (8)

connected(x1c, . . . , x|V |c) ∀c ∈ {1, . . . , k} (9)
xic ∈ {0, 1} ∀c ∈ {1, . . . , k},∀i ∈ {1, . . . , |V |} (10)
yijc ∈ {0, 1} ∀c ∈ {1, . . . , k},∀(i, j) ∈ Eo (11)

s ∈ {0, . . . , b |V |
k
c} (12)

V. EXTENSIONS AND IMPROVEMENTS

We choose to use a generic discrete constraint solver to
solver our non-traditional clustering problem. In the following
we discuss three extensions to the above formulation that are
possible thanks to the use of generic solvers and there ability
to handle different types of constraints.

A. Overlapping clusters

It is known that genes can occur in multiple pathways, and
hence we may wish to allow for nodes to be included in more
than one cluster. To apply this modification to our formulation,
we only need to replace constraints (2) with the following
inequalities:

k∑
j=1

xij ≥ 1 i ∈ {1, . . . , |V |} (13)

B. Breaking symmetries

Clustering problems often have an inherent symmetry which
is due to the fact that the labels of clusters are arbitrary. This
means that for each solution, there are k! equivalent solutions
that only differ by the cluster labels. We can strengthen our
formulation by breaking these symmetries. [20] suggests two
measures to reduce these symmetries: 1) assign label 1 to the
cluster that contains node 1. 2) assign labels to other clusters



Algorithm 1 Computing the set of Pareto optimal solutions

1: P ← ∅ . the set of Pareto optimal solutions
2: m← 0 . Minimum size of the previous solution
3: repeat
4: solution← MINIMIZEPENALTIES(V,Gi, Gc, k,m)
5: P ← P ∪ solution
6: m← size of the smallest cluster in solution
7: until no solution was found
8: return P

in the increasing order of their sizes. This translates to the
following constraints:

x11 = 1 (14)
|V |∑
i=1

xic ≤
|V |∑
i=1

xi(c+1) c ∈ {2, . . . , k − 1} (15)

These constraints do not eliminate all symmetries (espe-
cially in the case of overlapping clusters) but still lead to
improvements in performance in practice.

C. Obtaining the set of Pareto optimal solutions

In the above formulation we used the commonly employed
method of reducing a bi-objective optimisation problem to a
single-objective one through the use of a balancing parameter
γ. An alternative solution is to use a bi-objective optimisation
approach to compute the set of Pareto optimal solutions.
A solution of a bi-objective optimization problem is Pareto
optimal if there is no other solution with a better quality with
respect to both objectives. Obtaining the set of Pareto optimal
solutions for other types of bi-objective constrained clustering
has been studied before [21]. As in that work, we use a method
based on the ε-constraint algorithm [22] to obtain the Pareto
optimal solutions. To do this, we remove the size component
from the objective leaving only the co-occurence part. Then
we iteratively solve this modified problem, each time adding
a constraint such that the size of the smallest cluster is larger
than that found in the previous iteration (m):

|V |∑
i=1

xic > m ∀c ∈ {1, . . . , k} (16)

The approach is depicted in Algorithm 1.

VI. ENFORCING CONNECTIVITY

The remaining issue to work out is how to represent
the connected(x1j , . . . , x|V |j) constraint. We investigate two
different approaches.

For a cluster to be connected, there should exist for each
pair of points belonging to the cluster at least one path between
these two nodes such that all nodes on this path also belong
to the cluster. In section VI-A we enforce this condition by
explicitly enumerating all simple paths between each pair of
non-adjacent nodes in the graph and adding variables and
constraints for these paths. However, the total number of paths
can be exponential leading to very large models to solve.

A way to avoid having to ground out constraints for all the
possible paths is to incrementally add only those constraints
needed. The cutting plane algorithm is a method that allows
this exactly. In section VI-B we introduce another formulation
for the connectivity constraint based on node-cut sets, which
also has a worst-case exponential number of constraints but
which lends itself well to an incremental cutting plane method.

A. Enumerating all simple paths

Consider a simple path between the nodes u and v. Let I
denote the set of indices of the intermediate nodes on this
path. Assume that binary variable yc indicates that all these
nodes belong to cluster c. A standard translation of the relation
(yc = 1) ⇔ ∧i∈I(xic = 1) to linear constraints gives the
following inequality:

0 ≤
∑
i∈I

xic − |I|yc ≤ |I| − 1

In general, let Puv denote the set of all simple paths between
nodes u and v in the interaction graph. For a path Pr ∈ Puv ,
let Ir denote the set of indices of intermediate nodes of Pr. We
introduce binary variable yrc to indicate that all these nodes
are assigned to cluster c. This relationship is enforced by the
following constraints:

0 ≤
∑
i∈Ir

xic − |Ir|yrc ≤ |Ir| − 1 ∀u, v ∈ V, (u, v) /∈ E,

∀r ∈ {1, . . . , |Puv|},∀c ∈ {1, . . . , k} (17)

Finally, to enforce the condition (xuc = 1 ∧ xvc = 1) ⇒
∨r(yrc = 1), we add the following constraints to the model:

xuc + xvc − 1 ≤
|Puv|∑
r=1

yrc ∀u, v ∈ V, (u, v) /∈ E,

∀c ∈ {1, . . . , k} (18)

These constraints ensure there exists at least one path in the
interaction graph between every two nodes in the same cluster.

B. A cutting plane approach

In the cutting plane method two steps are iteratively re-
peated: 1) A model that includes only a subset of the con-
straints is solved. 2) A constraint that is violated by the
current solution, a cut, is added to the model. These steps
are repeated until no constraint is violated. To use the cutting
plane algorithm, we need an oracle that given an assignment
x can check if x satisfies all constraints and if not, finds
a constraint that is violated by x. Since in the latter case
the added constraint separates x from the feasible region,
the problem solved by the oracle is called the separation
problem. In a branch and cut algorithm, cutting planes are
added throughout the branch and bound tree.

A cutting plan approach with the formulation of connec-
tivity from the previous section would require us to add both
variables (the yrc ones) and constraints (17) and (18) for each
cut. Instead, we adopt the approach of [23] which defines
the connectivity constraints in terms of node-cut sets. The
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Fig. 2: The sets {2, 5} and
{3, 5} belong to Γ(1, 4), but
the set {2, 3, 5} does not
because it is not minimal.

advantage is that no extra variables need to be introduced,
and that between two nodes the connectivity can be broken
incrementally with individual constraints. The following defi-
nition and theorem are taken from [23].

Definition 1 (Node-cut set). Given nodes u, v ∈ V that are
not adjacent ((u, v) /∈ E), a set of nodes S ⊆ V \ {u, v} is a
node-cut set separating u and v (or simply a uv-node cut) if
all paths between u and v intersect S.

There is hence at least one node from every path between
u and v in the uv-node cut. A uv-node cut is minimal if it
is not a uv-node cut after removing any of its nodes. For a
pair of non-adjacent nodes u and v, we denote by Γ(u, v) the
set of all minimal uv-node cut sets. Figure 2 shows examples
of minimal node-cut sets. The following theorem relates the
connectivity of a graph to its minimal node-cut sets.

Theorem 1. Given U ⊆ V and a pair of non-adjacent nodes
u, v ∈ U , there exists a path between u and v in the subgraph
induced by U if and only if all uv-node cuts S are such that
S ∩ U 6= ∅.

For every uv-node cut S this theorem states thatto ensure
that cluster c is connected, at least one node in the node cut
must belong to the cluster:

(xuc = 1 ∧ xvc = 1)⇒ ∨w∈S(xwc = 1)

By translating this condition into linear constraints we can
formulate the constraint connected(x1c, . . . , x|V |c) as follows:∑

w∈S
xwc ≥ xuc + xvc − 1

∀(u, v) ∈ V, (u, v) /∈ E,S ∈ Γ(u, v) (19)

The constraint set (19) contains an exponential number
of constraints. Following the cutting plane method, we will
iteratively add some of the violated constraints to the model.
A common practice is to add one or some of the constraints
most violated by the current solution in each iteration.

Given a solution x∗ of the problem, let us denote the value
of xic variables in this solution by x∗ic and the vector of
variables corresponding to cluster c by x∗c . In this respect,
a first observation is that

∑
w∈S x

∗
wc ≥ 0 is always true as the

x∗ are Boolean variables. Hence, the constraint can only be
violated if x∗uc +x∗vc− 1 > 0, that is, if both variables belong
to the same cluster. If that is the case, then the constraint can
only be violated if

∑
w∈S x

∗
wc = 0, that is, if none of the

nodes in the cut set are in the cluster. If no such constraint
can be found that the connectivity constraint is satisfied.

The same principle can be used on real-valued solutions
(as computed by the MIP solver when solving the linear

relaxation). The most violated constraint for a non-adjacent
pair (u, v) is now the constraint for which x∗uc + x∗vc − 1 > 0
and that minimizes

∑
w∈S x

∗
wc. To add a cut of (u, v) in the

cutting plane algorithm, the goal is hence to find the node-cut
set S∗,

S∗ = argmin
S∈Γ(u,v)

∑
w∈S

x∗wc (20)

It is shown in [23] that the solution for equation 20 can be
computed efficiently: If we use x∗ic as the capacity of node
i, the separation problem reduces to finding the minimum
capacity node cut separating u and v. This problem can be
solved using any standard min-cut algorithm. A summary of
the cut generation procedure is presented in algorithm 2, where
for each cluster the most violated constraint among its node-
pairs is added.

Algorithm 2 The cut-generation procedure

1: C ← ∅ . Set of constraints to add
2: for c ∈ {1, . . . , k} do
3: for u, v such that (u, v) /∈ Ei and x∗uc + x∗vc > 1 do
4: S∗ ← min-cut(u, v,x∗c , Gi)
5: C ← C ∪ {

∑
w∈S∗ xwc ≥ xuc + xvc − 1}

6: end for
7: end for
8: Add constraints C to the model

VII. EXPERIMENTS

We ran experiments on quad-core Linux machines with 32
GB of memory. We implemented our branch-and-cut algorithm
using the Python interface of Gurobi-71 and allowed it to use
all 4 cores. The code and data are available online 2.

To solve the separation problem, we used the min-cut/max-
flow algorithm from the NetworkX-1.11 library [24]. In order
to use this algorithm, we first replaced each undirected edge
by two opposite directed edges of infinite capacity. Then, we
replaced each node v by two nodes vin, vout connected by two
opposite edges, with capacities equal to the capacity of v. We
obtain the minimum node cut separating u and v by computing
the minimum cut between uout and vin in this graph.

We followed the recipe of [23] for adding the cuts: cuts
to the linear relaxation were only added at the root node
of the branch-and-cut tree. Moreover, when adding cuts to
the relaxation, we monitored the change in the value of the
objective function. If this value improved less than 5% in 10
consecutive rounds, we stopped adding cuts. Outside the root
node, we only add cuts when an integer solution is found. We
normalized the two components of the objective function. We
multiplied the size variable by 1/n in overlapping clustering
and by k/n in non-overlapping clustering. We divided the
second component by the sum of edge weights.

The graphs used in our experiments were extracted from
the HINT+HI2012 protein-protein interaction network [25],

1www.gurobi.com
2https://github.com/Behrouz-Babaki/graph clustering



TABLE I: instance properties

instance #simple paths #nodes #edges
200_1000 93 40 46
200_1250 1508 52 68
250_750 45 30 32
250_1000 1040 69 81
300_750 59 44 46
350_500 12 13 12
350_750 73 58 60
450_750 105 90 92

[26]. We consider this selection of subgraphs representative
of the graphs encountered in our application domain. Table I
highlights some of the properties of our selected instances.
Several of these instances contain a very low number of
edges compared to nodes. As a direct result of this, they
contain a very small number of paths. We have also selected
a few graphs that contain more paths. These graphs also have
a number high-degree nodes. Such hubs are fairly common
in scale-free networks, of which protein-protein interaction
networks are a common example.

A. Results and discussion

1) Scalability of the two approaches: We compare the
runtime of the model formulation using all paths (ENUM)
with that of using branch-and-cut (BNC), for a num-
ber of datasets and k values and averaged over γ ∈
{0.1, 0.25, 0.33, 0.5, 1, 2, 3, 4, 5, 10}. Table II shows the re-
sults. In each instance, one of the algorithms outperforms the
other one. This divides the instances into two groups. Instances
for which enumerating all paths has a better performance are
those which have a similar number of nodes and edges (see
table I). As a result, the total number of simple paths in these
graphs is small and the optimization model has a reasonable
size. On the other hand, for two of the instances the branch-
and-cut method provides a clear advantage. The total number
of simple paths for these instances is considerably larger than
the others. Hence, for these instances the extra effort for
solving the separation problem pays off.

2) Impact of γ: The γ parameter is a way of balancing
the minimum size of the clusters with the total co-occurrence
penalty. We showcase the effect of the parameter on these
two components of the objective in Figure 3 for instance
250_750. As γ approaches 0 most weight is given to the
size leading to increasing larger minimum clusters but also a
sharp incline in the total co-occurence penalty. For too high γ
values, ≥ 4 in this case, the size of the clusters can drop to
values of 1 or 2, which are not meaningful. In this case, a γ
between 1 and 3 seems most sensible.

3) Pareto optimal set: As explained in Section V-C one
can also use generic solvers to compute the Pareto-optimal
set directly instead of having to determine a γ parameter. In
Figure 4 for the non-overlapping setting we can see that a few
smallest cluster values are skipped because not optimal, and
that the there is a gradual increase in total violations as the
minimum size increases, with an increase in incline near the

TABLE II: Average runtimes of overlapping and non-overlapping
clustering by enumerating all simple paths (AllPaths) and branch and
cut (BnC). Timed-out experiments are counted as 600 seconds (–).

overlapping non-overlapping
instance k AllPaths BnC AllPaths BnC
200_1000 2 0.830 12.320 0.319 13.398

3 3.211 16.255 4.474 15.007
4 14.846 28.714 15.578 52.262

200_1250 2 225.735 43.740 113.210 38.849
3 582.541 52.950 298.390 72.643
4 – 188.287 595.930 205.454

250_1000 2 487.222 78.243 370.898 69.481
3 587.700 121.677 – 217.079
4 – 206.952 – –

250_750 2 0.166 4.058 0.025 3.873
3 0.321 6.433 0.387 3.965
4 0.737 10.564 0.698 7.374

300_750 2 0.333 12.232 0.209 10.546
3 0.761 20.365 0.812 16.924
4 1.728 28.267 3.598 50.836

350_500 2 0.004 0.093 0.003 0.151
3 0.006 0.129 0.021 0.257
4 0.007 0.181 0.039 0.211

350_750 2 0.503 44.842 0.591 20.130
3 1.971 113.311 2.016 58.417
4 7.892 323.188 9.841 309.998

450_750 2 1.560 115.541 1.334 89.672
3 10.686 361.855 12.655 320.706
4 90.516 430.954 75.395 –

end (there are 30 genes in this dataset). This can be used to
select an appropriate solution among the Pareto optimal ones.

4) Biological validation: Research increasingly shows that
a single type of cancer, for example breast cancer, is not one
homogeneous disease. Instead, it can be divided in different
subtypes that display different harmful effects, and in turn
require different treatment. In order to validate the results
of the clustering approach, we looked at the PAM50 tumor
subtype classification [27], which was previously published
for the patients in our records by the Cancer Genome Atlas
Network [28]. PAM50 subtypes are determined by looking at
the expression levels of 50 specific genes from a breast cancer
sample in order to assign an intrinsic subtype to the patients
tumor. As this is based on expression data rather than the
mutational gene data used in our clustering approach, correla-
tion between the PAM50 subtypes and the identified clusters
would be interesting as this would enable us to (partially)
subtype breast cancer tumors based on gene mutation data.
Furthermore, since the PAM50 tumor subtype classification
has prognostic significance, correlation between the clusters
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Fig. 3: impact of γ on smallest cluster size (left) and total co-
occurrence penalty (right) for instance 250_750.
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Fig. 4: The Pareto optimal set for overlapping clustering on instance
250_750 with three values for number of clusters.

Fig. 5: Number of patients which are a member of each cluster, per
PAM50 subtype.

and the PAM50 tumor subtypes would largely validate our
clustering approach as being biologically relevant in a real-
world cancer setting. We analyzed the data by partitioning
it into 4 non-overlapping clusters with a γ of 0.5. We then
assessed every patient in our dataset for membership of one
or multiple clusters. A patient was considered a member of a
specific cluster when that patient had at least one deleterious
mutation (defined as a PHRED-scaled CADD score of at
least 20 [29]). The results of this analysis are depicted in
Figure 5 and Figure 6. We performed a χ-square goodness
of fit test on the distribution of the basal-like PAM50 subtype
from Figure 5 and on both the distributions of cluster 1 and
cluster 2 from Figure 6 to test whether they deviated from a
random assignment of patients to clusters. All three distribu-
tions deviated significantly from the random case (Basal-like:

Fig. 6: Number of patients with specific PAM50 subtype, per cluster.

χ−squared = 103.48, df = 3, p−value < 2.2e−16; cluster
1: χ − squared = 15.507, df = 4, p − value = 0.003757;
Cluster 2: χ − squared = 22.388, df = 4, p − value =
0.0001678). Based on these results, and the observations from
figure 5 and figure 6, two interesting conclusions could be
drawn: 1) patients with a basal-like PAM50 tumor subtype
were very likely to have a mutation in clustered pathway 4 and
2) patients with a mutation in pathway 1 or 2 were more likely
to have a luminal A subtype. This shows that the identified
gene clusters / pathways have at least some correlation with the
PAM50 subtypes and could thus be useful in patient subtyping
and exploring subsequent treatment options, although more
research would be needed to confirm this. As such, our
subtyping method is able to generate meaningful biological
results in a cancer subtyping setting.

VIII. CONCLUSIONS AND FUTURE WORK

Motivated by a problem in bio-informatics, we presented
a novel graph clustering problem involving two graphs, a
co-occurrence graph whose weighted edges are part of the
objective function, and an interaction graph with hard connec-
tivity constraints. We propose two methods for handling the
(potentially exponential in number) connectivity constraints,
one based on enumerating all simple paths and the other being
a cutting plane approach. We also present a number of ex-
tensions such as a bi-objective Pareto optimisation method to
balance minimum cluster size and total penalty. Computational
experiments show the properties of the different proposed
methods, and a validation experiment on a separate biolog-
ical data source demonstrates the potential of our proposed
approach.
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