Combining Stochastic Constraint Optimization and Probabilistic Programming - From Knowledge Compilation to Constraint Solving

Abstract

We show that a number of problems in Artificial Intelligence can be seen as Stochastic Constraint Optimization Problems (SCOPs): problems that have both a stochastic and a constraint optimization component. We argue that these problems can be modeled in a new language, SC-ProbLog, that combines a generic Probabilistic Logic Programming (PLP) language, ProbLog, with stochastic constraint optimization. We propose a toolchain for effectively solving these SC-ProbLog programs, which consists of two stages. In the first stage, decision diagrams are compiled for the underlying distributions. These diagrams are converted into models that are solved using Mixed Integer Programming or Constraint Programming solvers in the second stage. We show that, to yield linear constraints, decision diagrams need to be compiled in a specific form. We introduce a new method for compiling small Sentential Decision Diagrams in this form. We evaluate the effectiveness of several variations of this toolchain on test cases in viral marketing and bioinformatics.

Publication
Principles and Practice of Constraint Programming (CP)
Date